Setup Menus in Admin Panel

  • LOGIN
  • No products in the cart.

Antiderivatives of Logarithmic Functions

Som formulas for computing antiderivatives of logarithmic functions are deduced.


Antiderivative of the Function y = v^n\,\ln v

Define u = \ln|\theta| and dv = \theta^{n}\cdot d\theta, so that du = \nicefrac{d\theta}{\theta} and v = \nicefrac{\theta^{n+1}}{(n + 1)}.

Now apply the formula of Integration by parts,

    \begin{eqnarray*} 	\int\!\theta^{n}\cdot \ln|\theta|\cdot d\theta  		&=&	\frac{\theta^{n+1}}{(n + 1)}\cdot\ln|\theta| - \int\! \frac{\theta^{n+1}}{(n + 1)}\cdot \frac{d\theta}{\theta}\\ 		&=& \frac{\theta^{n+1}}{(n + 1)}\cdot\ln|\theta| - \frac{1}{(n + 1)}\,\int\!\theta^{n}\cdot d\theta\\ 		&=& \frac{\theta^{n+1}}{(n + 1)}\cdot\ln|\theta| - \frac{1}{(n + 1)^2}\,\theta^{n+1} + C\\ 		&=& \frac{\theta^{n+1}}{(n + 1)^2}\cdot\left[(n + 1) \, \ln|\theta| - 1\right] + C \end{eqnarray*}

And the rule to compute the antiderivative is generalized by means of the chain rule as:

    \begin{equation*} 	\int\!v^{n}\cdot \ln|v|\cdot dv = \frac{v^{n+1}}{(n + 1)^2}\cdot\left[(n + 1) \, \ln|v| - 1\right] + C \end{equation*}

SEE ALL Add a note
YOU
Add your Comment
 
All rights reserved.